532 research outputs found

    Epigenetic regulation of neuroblastoma development

    No full text
    In recent years, technological advances have enabled a detailed landscaping of the epigenome and the mechanisms of epigenetic regulation that drive normal cell function, development and cancer. Rather than merely a structural entity to support genome compaction, we now look at chromatin as a very dynamic and essential constellation that is actively participating in the tight orchestration of transcriptional regulation as well as DNA replication and repair. The unique feature of chromatin flexibility enabling fast switches towards more or less restricted epigenetic cellular states is, not surprisingly, intimately connected to cancer development and treatment resistance, and the central role of epigenetic alterations in cancer is illustrated by the finding that up to 50% of all mutations across cancer entities affect proteins controlling the chromatin status. We summarize recent insights into epigenetic rewiring underlying neuroblastoma (NB) tumor formation ranging from changes in DNA methylation patterns and mutations in epigenetic regulators to global effects on transcriptional regulatory circuits that involve key players in NB oncogenesis. Insights into the disruption of the homeostatic epigenetic balance contributing to developmental arrest of sympathetic progenitor cells and subsequent NB oncogenesis are rapidly growing and will be exploited towards the development of novel therapeutic strategies to increase current survival rates of patients with high-risk NB

    T-ALL and thymocytes : a message of noncoding RNAs

    Get PDF
    In the last decade, the role for noncoding RNAs in disease was clearly established, starting with microRNAs and later expanded towards long noncoding RNAs. This was also the case for T cell acute lymphoblastic leukemia, which is a malignant blood disorder arising from oncogenic events during normal T cell development in the thymus. By studying the transcriptomic profile of protein-coding genes, several oncogenic events leading to T cell acute lymphoblastic leukemia (T-ALL) could be identified. In recent years, it became apparent that several of these oncogenes function via microRNAs and long noncoding RNAs. In this review, we give a detailed overview of the studies that describe the noncoding RNAome in T-ALL oncogenesis and normal T cell development

    DNA methylation profiling of primary neuroblastoma tumors using methyl-CpG-binding domain sequencing

    Get PDF
    Comprehensive genome-wide DNA methylation studies in neuroblastoma (NB), a childhood tumor that originates from precursor cells of the sympathetic nervous system, are scarce. Recently, we profiled the DNA methylome of 102 well-annotated primary NB tumors by methyl-CpG-binding domain (MBD) sequencing, in order to identify prognostic biomarker candidates. In this data descriptor, we give details on how this data set was generated and which bioinformatics analyses were applied during data processing. Through a series of technical validations, we illustrate that the data are of high quality and that the sequenced fragments represent methylated genomic regions. Furthermore, genes previously described to be methylated in NB are confirmed. As such, these MBD sequencing data are a valuable resource to further study the association of NB risk factors with the NB methylome, and offer the opportunity to integrate methylome data with other -omic data sets on the same tumor samples such as gene copy number and gene expression, also publically available

    Vehicle development, pharmacokinetics and toxicity of the anti-invasive agent 4-fluoro-3’,4’,5’-trimethoxychalcone in rodents

    Get PDF
    Effective inhibitors of invasion and metastasis represent a serious unmet clinical need. We have recently identified 4-fluoro-3',4',5'-trimethoxychalcone or C-16 as a potent anti-invasive molecule. In this paper, we report on the development of an optimized vehicle for oral administration of C16. We also explore its pharmacokinetic and toxicity profile in rodents as a prelude to a broad-scope evaluation as a pharmacological tool in animal models of disease. C16 showed suboptimal pharmacokinetics with limited oral bioavailability and whole blood stability. Rapid metabolism with elimination via glutathione conjugation was observed. An oral dosing routine using medicated gels was developed to overcome bioavailability issues and yielded sustained whole blood levels above the half maximal effective concentration (EC50) in a 7-day study. The compound proved well-tolerated in acute and chronic experiments at 300 mg/kg PO dosing. The medicated gel formulation is highly suitable for evaluation of C16 in animal models of disease

    Early and late effects of pharmacological ALK inhibition on the neuroblastoma transcriptome

    Get PDF
    Background: Neuroblastoma is an aggressive childhood malignancy of the sympathetic nervous system. Despite multi-modal therapy, survival of high-risk patients remains disappointingly low, underscoring the need for novel treatment strategies. The discovery of ALK activating mutations opened the way to precision treatment in a subset of these patients. Previously, we investigated the transcriptional effects of pharmacological ALK inhibition on neuroblastoma cell lines, six hours after TAE684 administration, resulting in the 77-gene ALK signature, which was shown to gradually decrease from 120 minutes after TAE684 treatment, to gain deeper insight into the molecular effects of oncogenic ALK signaling. Aim: Here, we further dissected the transcriptional dynamic profiles of neuroblastoma cells upon TAE684 treatment in a detailed timeframe of ten minutes up to six hours after inhibition, in order to identify additional early targets for combination treatment. Results: We observed an unexpected initial upregulation of positively regulated MYCN target genes following subsequent downregulation of overall MYCN activity. In addition, we identified adrenomedullin (ADM), previously shown to be implicated in sunitinib resistance, as the earliest response gene upon ALK inhibition. Conclusions: We describe the early and late effects of ALK inhibitor TAE684 treatment on the neuroblastoma transcriptome. The observed unexpected upregulation of ADM warrants further investigation in relation to putative ALK resistance in neuroblastoma patients currently undergoing ALK inhibitor treatment

    Selective inhibition of the p53–MDM2 interaction by nutlin drugs: a new therapeutic perspective for neuroblastoma

    Get PDF
    Neuroblastoma is one of the most common and most deadly childhood tumors. There is an unmet need to develop new therapeutic modalities for this malignancy that preferentially should be guided by our increasing knowledge of the biology of neuroblastoma. Proliferation and survival of neuroblastoma cells is critically dependent on suppression of the activity of the tumor suppressor protein p53, which is often mediated by increased activity of the MDM2 oncoprotein. Accordingly, small-molecule inhibitors of the interaction between MDM2 and p53 may provide a useful therapeutic option for the treatment of neuroblastoma by restoring the potent antitumor activity of wild-type p53. One of the most promising classes of selective inhibitors of the p53–MDM2 interaction are the nutlins, which have been extensively studied over the last years in several tumor types, including neuroblastoma. We discuss here preclinical data that support the notion that nutlin drugs may offer therapeutic benefit for children with neuroblastoma, on condition that wild-type p53 is present

    A novel and universal method for microRNA RT-qPCR data normalization

    Get PDF
    Gene expression analysis of microRNA molecules is becoming increasingly important. In this study we assess the use of the mean expression value of all expressed microRNAs in a given sample as a normalization factor for microRNA real-time quantitative PCR data and compare its performance to the currently adopted approach. We demonstrate that the mean expression value outperforms the current normalization strategy in terms of better reduction of technical variation and more accurate appreciation of biological changes
    • …
    corecore